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Mmtract--The problem of calculating the d i ~  due to finite elliptic discs at the interface (x3 = 0) of 
two incompressible immiscible fluids of diHerent coefficients of viscosity is solved, ~ that body 
inertia forces are ueldilp3~. When the direction of motion is parallel to the interface, om sohnion, which is 
based ou potential functions analosous to the Papkovitch-Ne~uer functions of linear elasticity, satizfies not 
only the interftc¢ condilious of continuity of fluid velocity and stresses bet also that of zero normal 
velocity at the interface. It is also renmrkzbk that this solutioe lsrodizces in each of the flukls a now field 
that is totally iMept~lent of the properties of the other fluid. These results are not peculiar to elliptic d~cs, 
but also hold for finite discs of other shapes. The method of soletion presented here can he readDy applied 
to the NOn St'zm~ cases where the two-phase luid, in the obseece of the disc, moves with an 
directed velocity which is a senera] polynomd funct~ of the coordm~ x, ~ t  x2 at the ~erfsce. The 
procedure for carrying this out is demonstrated by ~veatinS the case of an elliptic disc in linear shear flow. 

I. INTRODUCTION 

The fluid dynamics of two-phase fluids perturbed by bodies movin8 throullh such fluids has 
recently assumed considerable importance in chemical engineering and bio-medicai engineerins. 

In some of the applications in these fields of en~neerins, the problem is generally one of great 
complexity which can in many cases be reduced to a more manageable problem, without 
si~ificantly altering the basic character and features of the flow, by mai6n8 some plausible 
assumptions. In some of such cases the body is idealised to be a disc. Furthermore, the flow 
field produced by the motion of the disc may be assumed to be quasi-steady provided that a 
suitable defined Reynolds number (usually based on the disc's dimension) is small. This paper 
deals with the motion of such an idealised body of elliptic shape at the interface of two 

immisc~le fluids. 
The problem of the motion of a circular disc moving with uniform but arbitrarily directed 

velocity at the interface of two immiscible fluids was recently studied by Ranger 0978) and 
Olunloyo (1978). In both studies, the interface which is orisinally the plane x3 = 0 is assumed to 
remain unaffected in its shape by the motion of the disc. Ranser 0978) solved the problem 
using the method of complementary integral representation at the interface. On the other hand, 
Olunloyo solved the same problem by using suitable integral representations of the 8eneral 
Papkovitch--Neuber and Boussinesq potential functions. 

In two-phase low Reynolds number flows, the matter of the correct conditions that should be 

satisfied at the interface is yet to be settled. There are two schools of thousht on this matter. 
One school (see for example Aderogba 1976) holds the view that the conditions of continuity of 
the tangential and normal components of stresses and velocities at the interface seem plausible, 
even though this may allow the interface to move normal to itself and possibly distort. The 
alternative view (which is the one supported by Lee et aL 1979, for example) is that the 
interface should be stationary while the normal stress component may vary discontinuously 
across the interface. The net force which may act on the interface in the latter case could either 
cause the interface to accelerate or be balanced by surface tension forces, which also cause the 
interface to distort. 

However, for a fiat disc in a steady stream of homogeneous fluid, a solution exists which 
yields zero values of stress components and normal velocity at all points in the plane of the disc 
except those on the disc itself provided the direction of the stream is parallel to the interface. In 
other words, the plane which contains the disc acts as a "free surface" bordered by a vacuum. 
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It follows therefore, that the solution to the corresponding problem of a disc moving at the 
interface of a two-phase fluid can be obtained by combining, w i t h o u t  a n y  m o d i f i c a t i o n  

w h a t s o e v e r ,  the single-phase solutions for each of the phases. There is then no interaction 
between the phases and the two-phase problem reduces to the problem of finding the single 
phase solution which also yields zero stresses and normal velocity at the interface. If such 
solution exists, as it does in this case, the controversy about the interface conditions to apply 
does not arise. When the direction of motion of the stream is normal to the interface, our 
solution gives rise to zero stress components and continuous velocity components at the 
interface. Thus the solution is also useful in constructing solution to the problem of a disc 
moving normal to a fluid interface if the interface conditions are assumed to be those of 
continuity of stresses and velocities. In fact no solution exists for the case where the direction 
of motion of the disc is normal to the interface if the condition of zero normal interface velocity 
is enforced unless, as one may expect, the disc is subjected to an infinite force. This 
observation is corroborated by the finding of Ranger (1978). 

The first part of this paper is devoted to developing the desired single-phase solution for an 
elliptic disc in a uniform, but arbitrarily directed flow. The method used is based on potential 
functions, akin to the Papkovitch-Neuber potentials of linear elasticity, and the properties of 
potentials due to elliptic laminae of variable surface densities. The second part of the paper 
treats the problem of an elliptic disc in linear shear flow. Finally, an outline is given of the 
procedure to be adopted in generalising this method to the case of a disc in a stream whose 
undisturbed velocity at the position of the disc is a general polynomial function of position. 

2. GOVERNING EQUATIONS 

If body and inertia forces are negligible, the equation of motion for an imcompressible 
Newtonian fluid of viscosity ~ is 

P.i = ~u~.j~. [I] 

The equation of continuity for the same fluid is 

u~.~ =0 .  [21 

In [1] and [2] P and u~ stand for the pressure and velocity vector respectively. The usual 
subscript notation is employed: subscripts preceded by comma denote differentiation with 
respect to the appropriate coordinate, e.g. u~,3=(0ud0x3); repeated letter subscripts imply, 
unless otherwise stated, summation over the values l, 2, 3. Note that [l] and [2] also hold 
approximately for unsteady flows ff Reynolds number defined in terms of fluid density p, free 

stream velocity U~, largest disc dimension amix and fi as 

Re = pU~a,,~/~ 

is much smaller than unity. The stress components, o,~, are then given by 

o'~j = - PS~j + p.(u~, i + uj. ~). [3} 

Aderogba (1974) showed that a complete general solution to [1] and [2], similar to the 
Papkovitch-Neuber solution to problems of elastic behaviour of isotropic materials, is 

u~ = (~o + x~¢/~).i - 2~ 

P = 2~.,, [41 

where V20o = V2~ = 0 and V2 is the Laplacian operator. 
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There is an infinite number of functions which satisfy these conditions but the relevant 
functions for any given problem are those that also satisfy the boundary conditions of the 
problem. In the case of a disc moving in a viscous fluid the solution is uniquely determined by 
requiring that the no-slip condition 

ui=O [5] 

be satisfied on the disc. It is shown in the next section that when the undisturbed fluid velocity 
is uniform, the presence of an elliptic disc in the fluid induces zero stresses and continuous 
normal velocity in the plane of the disc except at points on the disc (where stresses may not be 
zero). 

3. ELLIPTICAL DISC IN UNIFORM ONE-PHASE FLOW 

Consider an elliptic disc with semi-axes al, az, lying in the plane x3 = 0 with its centre at 
(0, 0, 0). Let U~ be the uniform undisturbed velocity of a stream flowing past the disc. We seek 
potential function 0o, ~i (i = 1, 2, 3) such that the velocity vector u~, when expressed as 

u, = U+ + (Oo + x~j)., - 2~1, 

satisfies the no-sfp condition of [5] on the disc. 
Guided by the properties of the potential field due to elliptic laminae of variable surface 

density and the requirements which the solution to the present problem has to satisfy, we select 
the following representation for Oo and Oj. 

+o = Aj f f, [6j{1-(6,1af -(621a2)Z}-'rZ/R] ds 

~ -= B, f f, [{1-(~tla,):-(~z/az)Z}-t/ZlR] ds 

j = t ,  :2 [6] 

i=  t,2,3 [7] 

where R is the distance from a point (61, 62, 0) on the disc to the general point (xt, x2, x3), i.e. 

R = {(x, - ~,): + ( x 2 -  ~)2 + x32},n. 

In [5] and [6] Aj and B+ are constant vectors. It can be deduced from the work of Dyson (1891) 
and Ferrers (1877) that 

and 

OJo = +a~A~x, f~ {(a~ + ~1)Q01)}-' d~ 

~i = EBi f ~  Q-t(~) d,1 i -- 1, 2, 3. 

j;,,2] 
[s] 

In [8], v = 0 for points on the disc while for points off the disc, v is the least positive root of the 
equation 

xl2l(ot :z + v) + x22/(a22 + v) + x32/v = O. 

ALSO, 
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and 
Q(n) = {a,:+ n)(a22 + r/)~} '/2 . 

We here point out certain properties of v on the disc as these will be found useful later on in 
this paper. We first note that 

~',, ~- - ~  = 2xd{ (a i  + z , ) [x lZ l (a l :  + v)  2 + x , ' / ( a : -  + v)" -,- x3"-/~,'-]} . [9] 

where we have taken a3 to be zero. 
From [9] we deduce that as v---} 0, 

v,~ ~ 2 v x i / ( K a i  z) for i =  1, 2 (no sum on i) 

while 

where 

As z,--} 0, we also have the result 

v,3 ~ 2 ( v / K )  '/: 

2 2 K = 1 - ( x l / a O  - (x , . /a: )  . 

In [10] 

f f/ I0 = Q- ' (n )  d n  and /~ = {(ai 2 + ~ ) Q ( r l )  }- ' dn. 

These integrals are available from tables of elliptic integrals (see for example Byrd & Friedman 
1971). The no-slip condition is satisfied on the disc (~,=0) if A i and B; are chosen to 

be 

where 

s i  -- - Aj - u/{ ffo + a / ( ) } ,  

A3 = O, 8 3  = U 3 / ( d o )  

j = l , 2  

[o = f o Q ( ~ ) - '  d~ and ~ = fo={(ai2+~)O(~)} - '  d•. 

[Ill 

It is observed here that the velocity field does not depend on any fluid property and more 
importantly that when U3 = 0, u~ = 0 on x3 = 0, v~ 0. The global pressure distribution P is 
obtained from [4] and [6] to be 

P = 2p .Bdo .  i 

= - 4 ~  Biv ,  Y O ( v ) .  

ui = Ui + ~.{A~ai2I~ - A ia j2x jv , . , / [ (a /  + v ) Q ( v ) ]  - B d o  - x k B k , . J Q ( v ) }  (no sum on i). [10] 

where 81j is the kronecker delta. 
We now return to the problem, and note that the global velocity distribution in terms of A~ 

and Bi is 
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On the disc v = 0 and 

p = - 4~rB~K-~r~l(a~a~ ) 

= -4U~K-IrZ/(a~affo). 

We note that when U~ = 0 the pressure on the disc is zero. When U~ # 0 the pressure 
distribution exhibits a square root singularity at the edge of the disc in confirmation of the 
finding of Olunloyo (1978). 

The stress distribution is given by 

crlj = - PSij + ~ [ -  eA~a~2{~v,j(ak2 + v)-IIQ(v) + 28~v,~(a~ ~ + v)-~lQ(v) 

+ x~{v,,(a~ ~ + v)-'/Q(v)},~ + x~{v,~(a~ ~ + v)-~/Q(o)},, - ~B~{(v,~/Q(v)),~ 

- (v ,  d Q ( v ) ) , ~ } ] .  [12] 

Noting that on xs = 0, v# 0 

I,,~3 = 28~31[v{x~2/(a~ 2 + v)  ~ + x;~/(a22 + v)" + (x;/v)~}], 

we establish from [12] that 

or31 =0  i =  1,2,3 

for points on x3 = 0 which are not on the disc. This suggests that the plane x3 ffi 0 acts as a 
stationary free surface bordered by a vacuum. If the fluid on one side of this plane (x3 < 0 say) 
is replaced by another fluid which moves co-currontly with the orisinal fluid all the conditions 
of the problem will remain sa t i red  in the original fluid and velocity and stresses will be 
continuous across this plane. Moreover, u3 = 0 on this plane when U3 = 0. 

Lastly, we note that on the disc (v = O) 

c~3~=-P and o3,=-4~.A~.K-Ir21(ala~) i=1 ,2 .  

3.1 Lift  and drag forces on disc in two-phase JIow 

If the half space x3 > 0 is occupied by a fluid with coefficient of viscosity ~1 and x3 < 0 is 
occupied by another fluid whose coe~cient of viscosity is  ~2 and if both fluids move with 
uniform free stream velocity Uj about an elliptic disc situated on the plane x3 = O, the lift force 
on the disc is 

t+s2 

where sl and s2 are the areas of the two faces of the disc. 

Fs= -4U3(~, + ~z)/a,a2~o f foK-tn ds 
= - S  frO,~ + ~,~) U3/7o • [13] 

Similarly the drag force on the disc is 

= s-o, ,  + ~ {  u?/Oo + a/r,)~ + U~l(Zo + a ~ 1 ~  ''~. [14] 
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The results of Olunloyo for a circular disc and that deduced from Oberbeck's result (see Moore 
1964) can easily be recovered by setting am = az = a, the radius of the disc. in [13] and [14]. 

4. DISC IN LINEAR SHEAR FLOW 

If in the absence of the disc the fluid velocity in the eventual position of the disc is 

U~ ~= Uax~ where U~ = 0, 

the potential functions which have the desired structure necessary for the satisfiation of all the 
conditions of the problem are 

where 

4'j = Bo~, i =  1,2, j =  1,2,3, 

4'0 = Ao()q.i - xl~i) 

x , = f  f {~d(~,,~gR}d~,d~2, 

~ '=  f f ,  { ~J(sr'' ~:2)/R} ds¢' d~2 ' 

J(~l, ~2) = {1 - ~glte [a 11~2 _ (eg2/a,~21-1~2./t 

[15] 

[161 

and Air and Bit are constant tensors. 
From [3] we obtain the expression for velocity to be 

[171 

The terms appearing in [17] can be deduced from the results given by Dyson and we have 

~'i.j. = ~ a / [ ( x j 6 ; .  + xt/Sj.){2Ii - a . ,2~ , , .  - 2ai"ili~ + 2i lj  

+ 2a~Ii~i -4ai2Ii j i }  + x.Sij{2l,  - a,.2~,,m - 2 a i 2 ~ i , ,  

+ 2a i2 / i .  + 2 a . 4 I i . .  - 4a.2I~.} + 60{x,.x,.(Ii.  

+ a,.4Ii . . . .  - 2a . ,2I i . , ,  . )  + x32Ii..} + 2xlx i 

× {ai4liij,. - aiZ~ih ~ + l i . .  + J[ji. ~ - 2ai2Ii~..} 

+ {X32xili. j -- l"2XiXmxmlimm, j}.n ]" [181 

Note that there is no sum on i, j, and n and that subscript m ranges from 1 to 2. Moreover. 

a3=0. 

~i = eai" xdi -~ 
(no sum) 

J ~,.,, = e ( a . Z h  + a/x,I,..) 
1191 

where 

lij.~ = {(a/+ -q)(a/+ n) (a .  2 + r~)O(rl)} -~ d'0 

[2o]  
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On invoking the no slip boundary condition [5] on the disc, the following equations result for Aj. 

and B~.. 

For n = 1.2 

and 

B.I + B~. - A.~ - A~. = O, n # j , 

BI, = B . ;  B22 = A22, 

ea.2[{2/. - am2r~, .  - 2o..2~,,M1 + 2 L j  + 2a;[.e}(A~. + A . )  

- 4t,  l(a,2At~ + a.2AM)] + ~.a?At,.{ ~ - a,,,2i,,t,,, - 2a,2i~ 

+ 2[.j + 2a.2i~,. - 4a.2[j.} - EB.jaj2~ + U.t = O. 

(no sum on n and ]) 

[21] 

[22] 

[j.,~ and rj.., etc. are evaluated by replacing the lower limits of the integrals in [20] with zero. 

For  n = 3 

Equations [21] still hold while in place of [22] we have 

- - + 2 r , , } -  B, , ]  + u , ,  = 0 (no sum on j ) .  

Again it is easy to verify that the normal velocity is zero in all of the plane x3 = 0. 
The pressure distribution is given by 

P = 2 ~ B # a ~ e ( ~ l j  + x~/j.,). [23] 

The second term in [23] exhibits a square root singularity at the edge of disc. The stress 
distn]~tuion can be obtained from [3], [15] and [16]. The resulting expression is rather long and 
will not be reproduced here. We however give a few salient features of the stress distribution 
on the plane x3 = 0. On the disc (x3 = 0, v = 0) 

0"33 ----  _ p. 

Also 0.3, = 0 on x3 = 0, v # 0 for i = I, 2, 3. 
Moreover on the disc (v = 0) the tangential stress distn'bmion is antisymmetric with respect 

to the axes of the disc. It therefore follows that the drag on the disc in shear flow is zero. This 
result holds not only for the elliptic disc but for any disc which is symmetrical about axes in its 
plane. F'mally the lift force on a disc at the planar interface of a two-phase fluid in shear flow is 

P ds 

= 2~'ala2(m + ~.~,]{B,j.a1~ + B.,I2a22). 

5. GENERALISATION TO GENERAL POLYNOMIAL FLOW 

The procedure adopted in the preceedln£ section can actually be generalised to the case 
where the free stream velocity is a general polynomial function of coordiutes xl aml x2, 

Let the velocity of the fluid in the absence of the disc be 

where j, k . . . . .  r ffi I, 2; i ffi I, 2, 3. 
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Let the velocity field U7 and the associated pressure field satisfy [1] and [2]. Then the 
potential functions which possess the requisite structure for the flow when the disc is now 
placed in the plane x3 = 0 are 

f f 

~Oo = B~j~ . . . .  ( Xik . . . . .  , - X ,~ jk  . . . .  ) 

where 

and 

Xik .... = f f~ {~:j~k... ,~,J(~, ~2)R} d~l d~:2 

O.ik . . . .  = 6i a - I i lk .  r .  

The velocity components are 

u~ = U~ik . . . .  X g j , . . .  X, + { ~ o +  X,.*,,,),~ - 2 ~ .  

Satisfaction of the no slip conditon gives rise to two matrix equations of the form 

C i j k  . . . .  X ~ X ~ k  . . . Xr  m O, 

D~ik . . . .  X~X~Xk . • • X ,  = 0 [25] 

where C and D are matrices whose elements depend on those of A, B and U. Equation [25] are 
solved to obtain expressions for the elements of A and B in terms of those of U. The pressure 
and stress distributions are obtained by using these potentials in [4] and [3] respectively. The 
two-phase solution is obtained by combining the single-phase solution for each of the phases 
without any further modification. 

6. CONCLUDING REMARKS 

A method has been presented for solving the problem of an elliptic disc moving at the 
interface (assumed planar) of two immiscible fluids. It is demonstrated, by working out the 
solution for uniform and shear flows, that there are solutions which satisfy the conditions of 
continuity of normal and tangential components of stress and velocity as well as that of zero 
normal interracial velocity. It is also shown that the flow fields described by these solutions are 
such that there is no interaction between the two immiscible fluids. The result reported by 
Olunloyo, that the pressure distribution exhibits a singularity of the square root type is here 
confmned even though their method of solving the problem differs somewhat from ours. The 
values of the drag and lift forces which we obtain for the elliptic disc in uniform two-phase flow 
reduces to those of Olunloyo for a circular disc on taking the appropriate limit. A procedure is 
outlined for extending the method to the case where the free stream two-phase fluid velocity is 
a general polynomial function of the coordinates xt and x:. Finally we remark that the method can 
easily be appfied to disc geometries for which the resulting surface integrals can be evaluated with 
the aid of potential theory. The problem of a disc moving inside one phase of a two-phase fluid 
medium will be addressed in a future paper. 
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